按标签
使用sort_index()方法,通过传递轴参数和排序顺序,可以对DataFrame进行排序。默认情况下,按升序对行标签进行排序。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
mns = ['col2','col1'])
sorted_df=unsorted_df.sort_index()
print sorted_df
它的输出如下 -
col2 col1
0 0.208464 0.627037
1 0.641004 0.331352
2 -0.038067 -0.464730
3 -0.638456 -0.021466
4 0.014646 -0.737438
5 -0.290761 -1.669827
6 -0.797303 -0.018737
7 0.525753 1.628921
8 -0.567031 0.775951
9 0.060724 -0.322425
排序顺序
通过将布尔值传递给升序参数,可以控制排序的顺序。让我们考虑以下示例来理解相同的内容。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
mns = ['col2','col1'])
sorted_df = unsorted_df.sort_index(ascending=False)
print sorted_df
它的输出如下 -
col2 col1
9 0.825697 0.374463
8 -1.699509 0.510373
7 -0.581378 0.622958
6 -0.202951 0.954300
5 -1.289321 -1.551250
4 1.302561 0.851385
3 -0.157915 -0.388659
2 -1.222295 0.166609
1 0.584890 -0.291048
0 0.668444 -0.061294
对列进行排序
通过传递值为 0 或 1 的轴参数,可以对列标签进行排序。默认情况下,axis=0,按行排序。让我们考虑以下示例来理解相同的内容。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
mns = ['col2','col1'])
sorted_df=unsorted_df.sort_index(axis=1)
print sorted_df
它的输出如下 -
col1 col2
1 -0.291048 0.584890
4 0.851385 1.302561
6 0.954300 -0.202951
2 0.166609 -1.222295
3 -0.388659 -0.157915
5 -1.551250 -1.289321
9 0.374463 0.825697
8 0.510373 -1.699509
0 -0.061294 0.668444
7 0.622958 -0.581378
按值
和索引排序一样,sort_values()是按值排序的方法。它接受一个 'by' 参数,该参数将使用要对值进行排序的 DataFrame 的列名。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1')
print sorted_df
它的输出如下 -
col1 col2
1 1 3
2 1 2
3 1 4
0 2 1
请注意,col1 值已排序,相应的 col2 值和行索引将与 col1 一起改变。因此,它们看起来未分类。
'by'参数采用列值列表。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by=['col1','col2'])
print sorted_df
它的输出如下 -
col1 col2
2 1 2
1 1 3
3 1 4
0 2 1