MATLAB 图形

  • 图形

    本章将继续探索MATLAB的绘图和图形功能。我们将讨论-
    • 绘制条形图
    • 绘制轮廓
    • 三维图
  • 绘制条形图

    bar命令绘制二维条形图。让我们举一个例子来说明这个想法。
    - 让我们有一个假想的教室,有10个学生。我们知道这些学生获得的分数百分比是75、58、90、87、50、85、92、75、60和95。我们将绘制此数据的条形图。
    创建一个脚本文件并输入以下代码-
    
    x = [1:10];
    y = [75, 58, 90, 87, 50, 85, 92, 75, 60, 95];
    bar(x,y), xlabel('Student'),ylabel('Score'),
    title('First Sem:')
    print -deps graph.eps
    
    运行文件时,MATLAB显示以下条形图-
    graphics
  • 绘制轮廓

    两个变量的函数的轮廓线是一条曲线,函数沿该曲线具有恒定值。等高线用于通过连接高于给定水平面(例如平均海平面)的等高点的点来创建等高线图。
    MATLAB提供了用于绘制轮廓图的 contour 函数。
    - 让我们生成一个轮廓图,它显示给定函数g = f(x,y)的轮廓线。此函数有两个变量。因此,我们将不得不生成两个自变量,即两个数据集x和y。这是通过调用meshgrid命令完成的。
    meshgrid命令用于生成给予超过x和y的范围内用增量的在每种情况下沿规范元件的矩阵。
    让我们画出函数g = f(x,y),其中−5 ≤ x ≤ 5,−3 ≤ y ≤ 3。让我们对两个值取0.1的增量。变量设置为-
    
    [x,y] = meshgrid(–5:0.1:5, –3:0.1:3);
    
    最后,我们需要分配功能。令我们的函数为:x 2 + y 2
    创建一个脚本文件并输入以下代码-
    
    [x,y] = meshgrid(-5:0.1:5,-3:0.1:3);   %independent variables
    g = x.^2 + y.^2;                       % our function
    contour(x,y,g)                         % call the contour function
    print -deps graph.eps
    
    运行文件时,MATLAB显示以下轮廓图-
    graphics
    让我们稍微修改一下代码以整理地图
    
    [x,y] = meshgrid(-5:0.1:5,-3:0.1:3);   %independent variables
    g = x.^2 + y.^2;                       % our function
    [C, h] = contour(x,y,g);               % call the contour function
    set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
    print -deps graph.eps
    
    运行文件时,MATLAB显示以下轮廓图-
    graphics
  • 三维图

    三维图基本上显示了由函数定义的两个变量g = f(x,y)的曲面。
    如前所述,要定义g,我们首先使用meshgrid命令在函数域上创建一组(x,y)点。接下来,我们分配函数本身。最后,我们使用surf命令创建表面图。
    以下示例演示了概念-
    例 - 让我们为函数g = xe-(x 2 + y 2)创建3D表面图。
    创建一个脚本文件并输入以下代码-
    
    [x,y] = meshgrid(-2:.2:2);
    g = x .* exp(-x.^2 - y.^2);
    surf(x, y, g)
    print -deps graph.eps
    
    运行文件时,MATLAB显示以下3-D映射-
    graphics
    您也可以使用mesh命令生成三维表面。但是,surf命令以彩色显示连接线和曲面的面,而mesh命令创建带有彩色线的线框表面,这些线连接定义点。