存储数据
在上一章中,我们学习了如何将数据加载到Apache Pig中。您可以使用store运算符将加载的数据存储在文件系统中。本章介绍如何使用Store运算符在Apache Pig中存储数据。
句法
下面给出了Store语句的语法。
STORE Relation_name INTO ' required_directory_path ' [USING function];
例 - 假设我们在HDFS中有一个具有以下内容的文件Student_data.txt。
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai
如下所示,我们已使用LOAD运算符将其读入关系student。
grunt> student = LOAD 'hdfs://localhost:9000/Pig_Data/student_data.txt' USING PigStorage(',') as ( id:int, firstname:chararray, lastname:chararray, phone:chararray,city:chararray );
现在,让我们将关系存储在HDFS目录“/pig_Output/”中,如下所示。
grunt> STORE student INTO 'hdfs://localhost:9000/Pig_Output/' USING PigStorage (',');
输出量
执行store语句后,您将获得以下输出。使用指定名称创建目录,数据将存储在其中。
2015-10-05 13:05:05,429 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.
MapReduceLau ncher - 100% complete
2015-10-05 13:05:05,429 [main] INFO org.apache.pig.tools.pigstats.mapreduce.SimplePigStats -
Script Statistics:
HadoopVersion PigVersion UserId StartedAt FinishedAt Features
2.6.0 0.15.0 Hadoop 2015-10-0 13:03:03 2015-10-05 13:05:05 UNKNOWN
Success!
Job Stats (time in seconds):
JobId Maps Reduces MaxMapTime MinMapTime AvgMapTime MedianMapTime
job_14459_06 1 0 n/a n/a n/a n/a
MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias Feature
0 0 0 0 student MAP_ONLY
OutPut folder
hdfs://localhost:9000/pig_Output/
Input(s): Successfully read 0 records from: "hdfs://localhost:9000/pig_data/student_data.txt"
Output(s): Successfully stored 0 records in: "hdfs://localhost:9000/pig_Output"
Counters:
Total records written : 0
Total bytes written : 0
Spillable Memory Manager spill count : 0
Total bags proactively spilled: 0
Total records proactively spilled: 0
Job DAG: job_1443519499159_0006
2015-10-05 13:06:06,192 [main] INFO org.apache.pig.backend.hadoop.executionengine
.mapReduceLayer.MapReduceLau ncher - Success!
验证
您可以如下所示验证存储的数据。
第1步
首先,使用ls命令列出目录Pig_output中的文件,如下所示。
hdfs dfs -ls 'hdfs://localhost:9000/pig_Output/'
Found 2 items
rw-r--r- 1 Hadoop supergroup 0 2015-10-05 13:03 hdfs://localhost:9000/pig_Output/_SUCCESS
rw-r--r- 1 Hadoop supergroup 224 2015-10-05 13:03 hdfs://localhost:9000/pig_Output/part-m-00000
您可以观察到在执行store语句后创建了两个文件。
第2步
使用cat命令,列出名为part-m-00000的文件的内容,如下所示。
$ hdfs dfs -cat 'hdfs://localhost:9000/pig_Output/part-m-00000'
1,Rajiv,Reddy,9848022337,Hyderabad
2,siddarth,Battacharya,9848022338,Kolkata
3,Rajesh,Khanna,9848022339,Delhi
4,Preethi,Agarwal,9848022330,Pune
5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
6,Archana,Mishra,9848022335,Chennai