TypeScript 泛型
-
定义和使用
软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性。 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能。在像C#和Java这样的语言中,可以使用泛型来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。下面来创建第一个使用泛型的例子:identity 函数。 这个函数会返回任何传入它的值。 你可以把这个函数当成是 echo 命令。不用泛型的话,这个函数可能是下面这样:function identity(arg: number): number { return arg; }
或者,我们使用 any 类型来定义函数:function identity(arg: any): any { return arg; }
使用 any 类型会导致这个函数可以接收任何类型的 arg 参数,这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。 这里,我们使用了 类型变量,它是一种特殊的变量,只用于表示类型而不是值。function identity<T>(arg: T): T { return arg; }
我们给 identity 添加了类型变量 T。 T 帮助我们捕获用户传入的类型(比如:number),之后我们就可以使用这个类型。 之后我们再次使用了 T 当做返回值类型。现在我们可以知道参数类型与返回值类型是相同的了。 这允许我们跟踪函数里使用的类型的信息。我们把这个版本的 identity 函数叫做泛型,因为它可以适用于多个类型。 不同于使用 any,它不会丢失信息,像第一个例子那像保持准确性,传入数值类型并返回数值类型。我们定义了泛型函数后,可以用两种方法使用。 第一种是,传入所有的参数,包含类型参数:let output = identity<string>("myString"); // type of output will be 'string'
这里我们明确的指定了T是string类型,并做为一个参数传给函数,使用了<>括起来而不是()。第二种方法更普遍。利用了类型推论 -- 即编译器会根据传入的参数自动地帮助我们确定T的类型:let output = identity("myString"); // type of output will be 'string'
注意:我们没必要使用尖括号(<>)来明确地传入类型;编译器可以查看myString的值,然后把T设置为它的类型。 类型推论帮助我们保持代码精简和高可读性。如果编译器不能够自动地推断出类型的话,只能像上面那样明确的传入T的类型,在一些复杂的情况下,这是可能出现的。
-
使用泛型变量
使用泛型创建像 identity 这样的泛型函数时,编译器要求你在函数体必须正确的使用这个通用的类型。 换句话说,你必须把这些参数当做是任意或所有类型。看下之前 identity 例子:function identity<T>(arg: T): T { return arg; }
如果我们想同时打印出 arg 的长度。 我们很可能会这样做:function loggingIdentity<T>(arg: T): T { console.log(arg.length); // Error: T doesn't have .length return arg; }
如果这么做,编译器会报错说我们使用了 arg 的 .length 属性,但是没有地方指明 arg 具有这个属性。 记住,这些类型变量代表的是任意类型,所以使用这个函数的人可能传入的是个数字,而数字是没有 .length 属性的。现在假设我们想操作 T 类型的数组而不直接是 T。由于我们操作的是数组,所以 .length 属性是应该存在的。 我们可以像创建其它数组一样创建这个数组:function loggingIdentity<T>(arg: T[]): T[] { console.log(arg.length); // Array has a .length, so no more error return arg; }
你可以这样理解loggingIdentity的类型:泛型函数loggingIdentity,接收类型参数T和参数arg,它是个元素类型是T的数组,并返回元素类型是T的数组。 如果我们传入数字数组,将返回一个数字数组,因为此时 T的的类型为number。 这可以让我们把泛型变量T当做类型的一部分使用,而不是整个类型,增加了灵活性。我们也可以这样实现上面的例子:function loggingIdentity<T>(arg: Array<T>): Array<T> { console.log(arg.length); // Array has a .length, so no more error return arg; }
使用过其它语言的话,你可能对这种语法已经很熟悉了。
-
泛型类型
泛型函数的类型与非泛型函数的类型没什么不同,只是有一个类型参数在最前面,像函数声明一样:function identity<T>(arg: T): T { return arg; } let myIdentity: <T>(arg: T) => T = identity;
我们也可以使用不同的泛型参数名,只要在数量上和使用方式上能对应上就可以。function identity<T>(arg: T): T { return arg; } let myIdentity: <U>(arg: U) => U = identity;
我们还可以使用带有调用签名的对象字面量来定义泛型函数:function identity<T>(arg: T): T { return arg; } let myIdentity: {<T>(arg: T): T} = identity;
这引导我们去写第一个泛型接口了。 我们把上面例子里的对象字面量拿出来做为一个接口:interface GenericIdentityFn { <T>(arg: T): T; } function identity<T>(arg: T): T { return arg; } let myIdentity: GenericIdentityFn = identity;
一个相似的例子,我们可能想把泛型参数当作整个接口的一个参数。 这样我们就能清楚的知道使用的具体是哪个泛型类型(比如: Dictionary<string>而不只是Dictionary)。 这样接口里的其它成员也能知道这个参数的类型了。interface GenericIdentityFn<T> { (arg: T): T; } function identity<T>(arg: T): T { return arg; } let myIdentity: GenericIdentityFn<number> = identity;
注意,我们的示例做了少许改动。 不再描述泛型函数,而是把非泛型函数签名作为泛型类型一部分。 当我们使用 GenericIdentityFn 的时候,还得传入一个类型参数来指定泛型类型(这里是:number),锁定了之后代码里使用的类型。 对于描述哪部分类型属于泛型部分来说,理解何时把参数放在调用签名里和何时放在接口上是很有帮助的。除了泛型接口,我们还可以创建泛型类。 注意,无法创建泛型枚举和泛型命名空间。
-
泛型类
泛型类看上去与泛型接口差不多。 泛型类使用(<>)括起泛型类型,跟在类名后面。class GenericNumber<T> { zeroValue: T; add: (x: T, y: T) => T; } let myGenericNumber = new GenericNumber<number>(); myGenericNumber.zeroValue = 0; myGenericNumber.add = function(x, y) { return x + y; };
GenericNumber 类的使用是十分直观的,并且你可能已经注意到了,没有什么去限制它只能使用 number 类型。 也可以使用字符串或其它更复杂的类型。let stringNumeric = new GenericNumber<string>(); stringNumeric.zeroValue = ""; stringNumeric.add = function(x, y) { return x + y; }; console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));
与接口一样,直接把泛型类型放在类后面,可以帮助我们确认类的所有属性都在使用相同的类型。我们在类那节说过,类有两部分:静态部分和实例部分。 泛型类指的是实例部分的类型,所以类的静态属性不能使用这个泛型类型。
-
泛型约束
你应该会记得之前的一个例子,我们有时候想操作某类型的一组值,并且我们知道这组值具有什么样的属性。 在 loggingIdentity 例子中,我们想访问 arg 的 length 属性,但是编译器并不能证明每种类型都有 length 属性,所以就报错了。function loggingIdentity<T>(arg: T): T { console.log(arg.length); // Error: T doesn't have .length return arg; }
相比于操作any所有类型,我们想要限制函数去处理任意带有 .length 属性的所有类型。 只要传入的类型有这个属性,我们就允许,就是说至少包含这一属性。 为此,我们需要列出对于T的约束要求。为此,我们定义一个接口来描述约束条件。 创建一个包含 .length 属性的接口,使用这个接口和 extends 关键字来实现约束:interface Lengthwise { length: number; } function loggingIdentity<T extends Lengthwise>(arg: T): T { console.log(arg.length); // Now we know it has a .length property, so no more error return arg; }
现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:loggingIdentity(3); // Error, number doesn't have a .length property
我们需要传入符合约束类型的值,必须包含必须的属性:loggingIdentity({length: 10, value: 3});
你可以声明一个类型参数,且它被另一个类型参数所约束。 比如,现在我们想要用属性名从对象里获取这个属性。 并且我们想要确保这个属性存在于对象 obj上,因此我们需要在这两个类型之间使用约束。function getProperty(obj: T, key: K) { return obj[key]; } let x = { a: 1, b: 2, c: 3, d: 4 }; getProperty(x, "a"); // okay getProperty(x, "m"); // error: Argument of type 'm' isn't assignable to 'a' | 'b' | 'c' | 'd'.
在 TypeScript 使用泛型创建工厂函数时,需要引用构造函数的类类型。比如,function create<T>(c: {new(): T; }): T { return new c(); }
一个更高级的例子,使用原型属性推断并约束构造函数与类实例的关系。class BeeKeeper { hasMask: boolean; } class ZooKeeper { nametag: string; } class Animal { numLegs: number; } class Bee extends Animal { keeper: BeeKeeper; } class Lion extends Animal { keeper: ZooKeeper; } function createInstance<A extends Animal>(c: new () => A): A { return new c(); } createInstance(Lion).keeper.nametag; // typechecks! createInstance(Bee).keeper.hasMask; // typechecks!