HiveQL Select-Joins
-
Hive Select-Joins
JOIN是一个子句,用于通过使用每个表的公共值来组合两个表中的特定字段。它用于合并数据库中两个或多个表中的记录。 -
句法
join_table: table_reference JOIN table_factor [join_condition] | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition | table_reference LEFT SEMI JOIN table_reference join_condition | table_reference CROSS JOIN table_reference [join_condition]
例 - 在本章中,我们将使用以下两个表。请考虑下表CUSTOMERS。+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
考虑另一个表ORDERS,如下所示:+-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+
给出了不同类型的联接,如下所示:- JOIN
- LEFT OUTER JOIN
- RIGHT OUTER JOIN
- FULL OUTER JOIN
-
JOIN
JOIN子句用于合并和检索来自多个表的记录。JOIN与SQL中的OUTER JOIN相同。将使用表的主键和外键引发JOIN条件。以下查询在CUSTOMER和ORDER表上执行JOIN,并检索记录:hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT FROM CUSTOMERS c JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:+----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+
-
LEFT OUTER JOIN
HiveQL LEFT OUTER JOIN返回左表中的所有行,即使右表中没有匹配项也是如此。这意味着,如果ON子句与右表中的0(零)条记录匹配,则JOIN仍返回结果中的一行,但右表中的每一列都为NULL。LEFT JOIN返回左表中的所有值,再加上右表中的匹配值,如果没有匹配的JOIN谓词,则返回NULL。以下查询演示了CUSTOMER和ORDER表之间的LEFT OUTER JOIN:hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c LEFT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:+----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+----------+--------+---------------------+
-
RIGHT OUTER JOIN
即使左表中没有匹配项,HiveQL RIGHT OUTER JOIN也会返回右表中的所有行。如果ON子句与左表中的0(零)记录匹配,则JOIN仍返回结果行,但左表中的每一列都为NULL。RIGHT JOIN返回右表中的所有值,再加上左表中的匹配值,如果没有匹配的谓词,则返回NULL。以下查询演示了CUSTOMER和ORDER表之间的RIGHT OUTER JOIN。hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c RIGHT OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+
-
FULL OUTER JOIN
HiveQL FULL OUTER JOIN组合了满足JOIN条件的左右外部表的记录。联接的表包含两个表中的所有记录,或为任一侧缺少的匹配项填充NULL值。以下查询演示了CUSTOMER和ORDER表之间的FULL OUTER JOIN:hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE FROM CUSTOMERS c FULL OUTER JOIN ORDERS o ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:+------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+