# install.packages("forecast") library("forecast") # Read the data data = scan('fancy.dat') ts_data <- ts(data, frequency=12, start=c(1987,1)) ts_data # Plot the time series png('time_series.png') plot.ts(ts_data) dev.off() # Fit the ARMA model fit = auto.arima(ts_data) summary(fit) # Series: ts_data # ARIMA(1,1,1)(0,1,1)[12] # Coefficients: # ar1 ma1 sma1 # 0.2401 -0.9013 0.7499 # s.e. 0.1427 0.0709 0.1790 # # sigma^2 estimated as 15464184: log likelihood=-693.69 # AIC=1395.38 AICc=1395.98 BIC=1404.43 # Training set error measures: # ME RMSE MAE MPE MAPE MASE ACF1 # Training set 328.301 3615.374 2171.002 -2.481166 15.97302 0.4905797 -0.02521172